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                         Practical Vibration Evaluation and Early Warning  
                                 of Damage in Post-Tensioned Tendons 
 

Jaime Lopez-Sabando 
 

                                                        ABSTRACT  

 Severe corrosion damage and even complete failure was recently 

discovered in external post-tensioned (PT) tendons of three Florida’s pre-cast, 

segmental bridges over seawater. A key deterioration factor was the formation of 

large bleed water grout voids at or near the anchorages. Steel corrosion may 

occur at the grout-void interface or in the air space of the void itself. Since the 

tendons are critical to the structural integrity of the bridges, reliable and non-

intrusive damage detection methods are desirable to manage or prevent future 

occurrences. 

In recent years several indirect non-destructive methods have been 

developed or improved to evaluate the conditions of the tendons. One of those 

methods is vibration-based tension measurements, consisting of detecting 

tendon tension loss by analyzing the tendon’s natural frequencies.  

      Until recently, vibration-based tension measurements were costly and 

laborious since they required several operators to conduct the tests and 

complicated analysis through different programs.  The first objective of this 

research is to provide a practical, simplified, user-friendly testing and analysis 

method for screening tendons by vibration measurements. 
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        Electrochemical Impedance Spectroscopy, Linear Polarization, and 

Electrical Resistance are alternative methods that could nondestructively detect 

or monitor corrosion before strand failures occur. The reliability and sensitivity of 

these conventional monitoring methods in solid or liquid media are well proven. 

However, few investigations exist on applying these methods to air-space 

corrosion as it may occur in tendon anchors.    The second objective of this 

research is to establish the feasibility of using the above conventional monitoring 

methods for detecting air-space corrosion.     

 In this investigation, two different types of Electrical Resistance probes 

were designed and evaluated. Also, electrochemical probes were constructed 

simulating strands conditions in the grout-void interface. Electrochemical 

Impedance Spectroscopy and Linear Polarization measurements were 

conducted in the electrochemical probes to calculate their instantaneous 

corrosion rates. Electrical Resistance and Electrochemical probes results 

indicate that both methods provide sufficient sensibility to determine the ongoing 

damage.  
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Chapter 1 

Introduction 

 Severe corrosion damage and even complete failure was recently 

discovered in external post-tensioned (PT) tendons of three Florida’s pre-cast, 

PT segmental bridges over seawater. The damage consisted, in each of the 

three bridges, of a completely separated tendon plus one to several partially 

detensioned tendons (Figure 1,2). A key deterioration factor was the formation of 

large bleed water grout voids at or near the anchorages. Steel corrosion may 

occur at the grout-void interface or in the air space of the void itself. Atmospheric-

like air space corrosion may be induced on the bare steel by the high humidity 

environment inside the grout voids. Since the tendons are critical to the structural 

integrity of the bridges, reliable and non-intrusive damage detection methods are 

desirable to manage or prevent future occurrences [1], [2]. 

 The following main characteristics of post-tensioned tendons are noted in 

the Federal Highway Administration Post-Tensioning Tendon Installation and 

Grouting Manual [3]. A completely assembled, post-tensioning tendon consists of 

anchorages, prestressing strands, duct, and cementitious grout. The anchorages 

are embedded in the concrete pier diaphragm. In many applications , including 

the bridges that experienced corrosion as noted above  the duct segments of the 

tendon are external to the concrete,  allowing them to freely vibrate between the 
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end-span diaphragm and deviation block or between deviation blocks (Figure 3). 

External segments typically range from 5 to 20 m in length, and their fixity 

approximates clamped end conditions.  

 
Figure 1. Failed Tendon at Niles Channel Bridge [4] 
 

 
Figure 2. Failed Tendon at Sunshine Skyway Bridge [5] 
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 The grout provides corrosion protection to the strand and bonds the 

internal tendon to the concrete structure surrounding the duct. The primary 

constituent of grout is ordinary Portland cement (Type I or II). Other cementitious 

material may be added such as fly ash to improve corrosion resistance in 

aggressive environments or a high range water-reducer (HRWR) to enhance 

fluidity . There are several commercial grouts approved by the Florida 

Department of Transportation (FDOT). The relative humidity (RH) inside the void 

depends on the type of grout being used, and can range from ~75% to ~90% [1].  

 The duct containing the grout and strands is made of high density 

polyethylene. The duct size depends on the number of strands inside the tendon 

“The nominal internal cross sectional area of circular duct should be at least 2.25 

times the net area of the post-tensioning strands”[3]. For example, a 11.45cm  

outer diameter duct with a wall thickness of 0.475cm can encase up to 38 

strands of 98.7mm² nominal cross section area,  or a 9cm outer diameter duct 

with a wall thickness of 0.432cm can encase up to 23 strands of 98.7mm² 

nominal cross section area). 

 A typical tendon  contains from 1 to many strands (e.g. 19,27,etc) made 

from 7 individual high tensile strength steel wires (A 416), arranged as 6 helically 

wound outer wires and one center “king” wire. ASTM A- 416 is a special steel 

alloy that it has been heat treaded to obtain a guaranteed ultimate tensile 

strength (GUTS) of 1860Mpa (270ksi) [8]. Strands used in PT bridges in Florida 

are mainly of two nominal sizes, 12.7mm (0.5in) and 15.24mm (0.6in) diameter, 

with nominal cross sectional areas of 98.7mm2  and 140mm2 (0.153 and 0.217 
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square inches), respectively. After wedge set and relaxation, the terminal stress 

in post-tensioned strands is on the order of 70% of their GUTS [9]. Therefore, a 

strand would likely fail if corrosion decreased its cross section area decreased by 

more than 30%, or even earlier because of stress concentration effects as 

corrosion is rarely uniform .  

A typical anchorage assembly consists of a wedge plate, anchor, trumpet, 

and wedges (Figure 4)[7]. The wedge plate carries all the strands and bears on 

the steel anchor. The anchor is typically made of ductile iron (ASTM A27) bearing 

directly against the concrete. Plastic or galvanized sheet metal trumpets are used 

to transition from the anchor to the duct.  Wedges are of case-hardened, low 

carbon or alloy steel, and their length is at least 2.5 times the strand diameter [3]. 

 

 

 

 

Deviation Blocks

Expansion Joint CL Pier
 

Deviation Blocks

Expansion Joint CL Pier

 
 
Figure 3. Typical Tendon Configuration [3] 
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Figure 4. Details of a Typical Anchorage System (Dywidag International) 

Direct detection of strand corrosion in the external section is difficult 

without damaging the tendon since the strands are encased within polyethylene 

ducts filled with hardened grout. Observation of corrosion in the anchorages is 

even more difficult unless a grout voids is present, in which case a boroscope 

may be introduced through a vent hole or unused wedge hole.  In recent years 

several indirect non-destructive methods have been developed or improved to 

evaluate the conditions of the tendons such as magnetic flux leakage or pulsed 

eddy current [6]. One of those methods is vibration-based tension 

measurements, consisting of detecting tendon tension loss by analyzing the  

natural frequencies of the vibrating external tendon length.  

Until recently, vibration-based tension measurements required several 

operators to conduct the tests and complicated analysis through different 

programs.  Frequent implementation can be costly since Florida has more than 
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80 major, post-tensioned bridges, which would require a commensurately large 

need of specialists work hours and funding.   The first objective of this research is 

to provide a practical, simplified, user-friendly testing and analysis method for 

screening tendons by vibration measurements. The research addresses different 

options of acquiring the tendon frequencies, required the employment of only one 

operator. 

Although the vibration technique can be easy to implement, a drawback is 

that it would only detect a damaged tendon after at least one of its strands has 

snapped, since tension loss may result only if a strand has failed and the grout 

cannot support the resulting transferred load.   Electrochemical Impedance 

Spectroscopy (EIS), Linear Polarization (LP), and Electrical Resistance (ER) are 

alternative methods that could nondestructively detect or monitor corrosion 

before strand failures occur. The reliability and sensitivity of these conventional 

monitoring methods in solid or liquid media are well proven. However, few 

investigations exist on applying these methods to air-space corrosion as it may 

occur in tendon anchors.    The second objective of this research is to establish 

the feasibility of using the above conventional monitoring methods for detecting 

air-space corrosion. If these methods prove to be sensitive enough, then they 

could be used as a supplement to vibration testing for early warning of tendon 

deterioration.  
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Chapter 2 

Practical Vibration Evaluation Methodology* 

 Vibration-Based tension measurements consist of measuring the 

vibrational response of tendons to mechanical excitation, and using the results 

along other tendon parameters to estimate the tendon tension. A damaged 

tendon can be detected by comparing its actual estimated tension against prior 

tension measurements, peer tendons, or by comparing segments tension at each 

end of the tendon. Conditions for a damaged tendon to be detected are that at 

least one of its strands has snapped, since tension loss may result only if a 

strand has failed, and that the grout cannot support the resulting transferred load.      

 As derived by Morse [2, 11] the vibration frequency (fn) of  modes n = 

1,2,… of a stiff bean of length L, mass per unit length mu, flexural stiffness S, 

tensioned by force T, and clamped at both ends are given by:  

 

( ) ( )])42(21[ 2221 LTSnLTSmuTLnfn ⋅⋅⋅++⋅+⋅⋅= π                [1]                                         

  

If S, L, mu, and fn are known then T can be found by solving the above equation 

for T. An independent estimate of T is obtained for each fn.  

                                                 
* Parts of the work in this chapter have appeared in A. Sagüés, T. Eason, C. Cotrim and J. Lopez-Sabando, “Validation 
and Practical Procedure for Vibrational Evaluation of Tendons”, Project No. BC 353#44, 158 pages, Draft Final Report to 
Florida Department of Transportation, University of South Florida, Tampa, Fl, December, 2007 [10]. 
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2.1 Tension Spreadsheet  

 As it was explained in the introduction, the first objective of this research is 

to provide a practical, simplified, user-friendly testing and analysis method for 

screening tendons by vibration measurements with the employment of only one 

operator. A spreadsheet called Tension-Spreadsheet was prepared in Excel to 

estimate the tension per strand in a set of 6 tendons, three on each side of a 

symmetric bridge span, each tendon having external segments terminating at the 

diaphragm at each end of the span. The Tension-Spreadsheet consisted of four 

worksheets called: Inputs, Calculations, Results, and Chart.  

 The Inputs worksheet (Figure 5) asks for the following parameters 

corresponding to each of the before mentioned tendon segments in a span: mass 

per unit length (mu), stiffness (S), number of strands, length of the tendon 

segment (L), and the first two vibration mode frequencies, corresponding to 4 

vibration tests (two straight impact and two side impact).  The length of the 

tendon segment is obtained from direct measurements, and the number and type 

of strands is obtained from construction data. Other parameters estimations are 

explained in the following sections. 

 The Calculations worksheet estimates the tension per strand for each 

tendon using equations (1,2) explained in the previous section. The frequency 

used for each mode is the average of the four vibration tests. The final estimated 
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tension is the average of the estimated tension for each mode. This worksheet is 

hidden to make sure the calculations stay uncorrupted by the user.

 The Results worksheet displays the estimated average tension per strand 

for each tendon (kN/strand) and the Quality %, or percent difference between the 

tension estimated from the first and second mode frequencies f1 and f2 (Figure 

6). The Chart worksheet (Figure 7) graphically displays peer tendon tensions to 

facilitate flagging potentially deficient tendons. 

Segment L meters Strands mu S Test Mode 1 Mode 2
SWL 18.65 19 19.268 127275 1 8.8 17.6

2 8.7 17.4
3 8.8 17.5
4 8.8 17.6

SWM 13.24 24 26.996 165700 1 12 24.1
2 12.1 24.1
3 12.1 24.2
4 12.1 24.3

SWS 7.852 28 29.641 246875 1 20.7 42.3
2 20.7 42.3
3 20.8 42.5
4 20.8 42.5

SEL 18.641 19 19.268 127275 1 8.8 17.5
2 8.8 17.4
3 8.8 17.5
4 8.8 17.5

SEM 13.258 24 26.996 165700 1 12.1 24.3
2 12.1 24.3
3 12 24.5
4 12.1 24.5

SES 7.879 28 29.641 246875 1 20.6 42.2
2 20.6 42.2
3 20.9 43
4 20.9 43

NWL 18.581 19 19.268 127275 1 8.7 17.4
2 8.6 17.4
3 8.7 17.4
4 8.7 17.5

NWM 13.215 24 26.996 165700 1 12 24
2 12 24
3 12 24
4 12 24

NWS 7.911 28 29.641 246875 1 20 40.9
2 20.2 40.9
3 20.2 41.4
4 20.2 41.4

NEL 18.554 19 19.268 127275 1 8.9 17.7
2 8.9 17.7
3 8.9 17.7
4 8.9 17.7

NEM 13.23 24 26.996 165700 1 12 24
2 12 24
3 12.1 24.2
4 12.1 24.2

NES 7.901 28 29.641 246875 1 20.3 41.6
2 20.3 41.6
3 20.5 41.9
4 20.5 41.9

Segment L meters Strands mu S Test Mode 1 Mode 2

Bridge's Name

 

Figure 5. Input Worksheet 
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Results   

Segment 
Avg Tension 
(kN/strand) Quality% 

SWL 102.15 0.85 

SWM 105.47 0.89 

SWS 94.49 0.26 

SEL 102.05 2.03 

SEM 106.83 1.07 

SES 95.83 1.41 

NWL 99.56 0.31 

NWM 103.55 1.14 

NWS 90.04 0.02 

NEL 103.58 1.72 

NEM 104.72 1.12 

NES 92.53 0.57 
Figure 6. Results Worksheet 
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Figure 7. Output Field – Graphic 
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2.2 Mass per Unit Length (mu) 

Prior to testing the operator can calculate the tendon mass per unit length 

(mu) from design or construction data by using the following equation. 

)](]
4

)2()[([1.0)(
2

2
gssgpm

kg ANdDdDdmu ρρρρπ −⋅⋅+−+−⋅⋅=        [3] 

mu = mass/length (kg/m) 

D = outer tendon diameter (cm) 

 D = 8.92 (cm) (“3.51 in” diameter duct) 

 D = 11.45 (cm) (“4.51 in” diameter duct) 

d = polyethylene duct wall thickness (cm) 

 d = 0.43 (cm) (“3.51 in” diameter duct) 

 d = 0.48 (cm) (“4.51 in” diameter duct) 

N = # of strands 

As = Area of one strand  

 As = 0.99 (cm²) (“½ in” strand diameter) 

 As = 1.44 (cm²) (“0.6 in” strand diameter) 

ρp = polyethylene density = 1.0 (g/cm³) 

ρg = hardened grout density = 1.84 (g/cm³) 

ρs = steel density = 7.8 (g/cm³) 

Example: Tendon of 10cm diameter, 0.6cm duct wall thickness, and 17 strands 

of type “½ in” diameter, m = 23.04 kg/m. 
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 This value of mu is permanently input to the spreadsheet before 

conducting the tests. If different types of tendons are tested in the same bridge 

various values of mu are entered in designated cells. 

2.3 Stiffness (S) 

Geometric strand arrangement within the tendon cross section is non-

uniform. The strands tend to crowd against the inside curvature of the tendon 

path as it is altered at end span and deviation blocks. As the steel strands 

contribute the most to the composite flexural stiffness, their non-isotropic 

distribution provides greater flexure stiffness in the horizontal than in the vertical 

direction. Thus, different sets of vibration frequencies may be expected for 

vibration deflection along those two directions [2, 12]. Averaging the two sets of 

frequencies (peak doublets) for each mode in the tension spreadsheet corrects to 

some extent the stiffness difference along the tendon. For an ideally bonded, 

close-packed arrangement of strands and grout the stiffness can be estimated by 

the following equation (4). This is a rough estimation, since strands distribution 

along the tendon are not always arranged as bonded and close-packed (Figure 

8,9), in which case stiffness can be significantly larger as the strands’ moment of 

inertia increase.  

)](4)()2([4.6).(
2

442
gs

s
pgp EEANEEdDEDmNS −⋅⎟

⎠
⎞

⎜
⎝
⎛ ⋅⋅+−−+⋅=

π
π                [4] 

S = Tendon stiffness (N.m²) 

D = outer tendon diameter (cm) 

 D = 8.92 (cm) (“3.51 in” diameter duct) 
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 D = 11.45 (cm) (“4.51 in” diameter duct) 

d = polyethylene duct wall thickness (cm) 

 d = 0.43 (cm) (“3.51 in” diameter duct) 

d = 0.48 (cm) (“4.51 in” diameter duct) 

N = # of strands 

As = Area of one strand  

 As = 0.99 (cm²) (“½ in” strand diameter) 

 As = 1.44 (cm²) (“0.6 in” strand diameter) 

Ep = polyethylene modulus of elasticity = 1.276 (GPa) [13] 

Eg = hardened grout modulus of elasticity = 40 (GPa) [13] 

Es = steel modulus of elasticity = 206.8 (GPa) [13] 

Example: A tendon with a  “3.51in” diameter duct, and 19 strands of type “½ in” 

diameter; S = 120kN-m². The average of 19-strand tendon S values observed at 

Niles Channel Bridge shows order-of-magnitude values of 125kN-m² and 140kN-

m² [12], in reasonable agreement with the above estimate. 

 This value of S is permanently input to the spreadsheet before conducting 

the tests. If different types of tendons are tested in the same bridge various 

values of S are entered in designated cells. 
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Figure 8. Strands Configuration, Tendon 13A Sloping Section [10] 
 

 
Figure 9. Strands Configuration; Tendon 13A, Horizontal Section [10] 
 
2.4 Tendon Frequencies 

This section addresses different methods of acquiring the first two 

vibration mode frequencies, requiring only one operator. One of these methods 

uses the built-in sound card of a computer, another method uses a data-

acquisition-board (DAB), and a third method uses a microphone recorder. 
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Programs were developed in Lab-VIEWTM for each of those methods to analyze 

and display the processed accelerometer output. Other components used in the 

data acquisition process are coaxial cables, accelerometer Model PCB 338B34, 

and signal conditioning amplifier ICP-Model 480E09; all of which are common for 

the three acquisition methods.  

2.4.1 Built-in Sound Card Method 

The method using the built-in sound card is based on a Dell Latitude 840 

computer operating Windows XP. A Lab VIEWTM-based program Analyzer-M was 

developed to manage data acquisition through the Line In port of the 16-bit 

resolution computer sound card. The program Analyzer-M has three Levels (1,2, 

and 3). Levels 1 and 2 are both graphical interfaces that display screens 

information. Level 3 is involved in data acquisition, data processing, and 

graphics. 

On Level 1 the first interface screen appears (Figure 10), which displays 

the University South Florida logo and requests the user to press “F2”.  When the 

user presses the “F2” key, the screen front panel for Level 1 closes and the 

program opens Level 2. The block diagram of Level 1 is in Appendix 1. 

 The Level 2 interface displays a screen with copyright information (Figure 

11). When the user accepts the conditions of use, the Level 2 modulus opens 

Level 3, otherwise the screen closes and the program stops . The block diagram 

of Level 2 is in Appendix 2. 
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Figure 10. Level 1 Front Panel 
 

 
Figure 11. Level 2 Front Panel 
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Level 3 is the main program which controls data acquisition, creates a 

.wav file of the acquired data, converts the processed accelerometer signal from 

time domain to frequency domain, and graphically displays both domains. The 

Level 3 block diagram consists of a sequence structure with two main 

subdiagrams (0,1). 

Subdiagram 0 (Appendix 3) has two sequence structures and one case 

structure. The first sequence structure specifies the file size in bytes, without the  

header, to be recorded (218) and the path to create the file.  The number of 

samples to collect (217) is half the file size without the header since each sample 

requires 2 bytes. The time for acquiring the data is 11.8886s for a sampling 

frequency of 11,025Hz, and the frequency resolution is 0.084Hz.  

The second sequence structure contains a while loop. The while loop 

terminates if Start or Record is activated, otherwise the while loop continues to 

iterate. The Start key F1 activates the case structure. The case structure 

contains two while loops, the first of which is used to configure the sound input 

device (computer sound card) with the chosen options of 11,025Hz sampling, 

monaural sound quality, 16 bits per sample, and 8192 buffer size . The second 

while loop reads data from the buffer and displays it in a chart continuously 

(Figure 12) until the stop key (F2) is pressed. This function is used to adjust 

hammer impact. 
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Figure 12. Level 3, Continuous Signal Display  

 Subdiagram 1 (Appendix 4) is activated when the stop key F2 or the start 

key F3 is pressed, prompting the user to enter a name for the .wav file to be 

recorded (Figure 13). Subdiagram 1 tasks are acquiring, recording, analyzing, 

and displaying the data. The first sequence structured deals with initial 

preparations of acquiring and recording the data such naming the file to be 

recorded and sound input configuration as subdiagram 0. Once the file is named 

and accepted the next while loop is activated displaying on the front panel in the 

info box “Hit F3 or the push button to begin recording” (Figure 14). The push 

button can be actuated by using a wireless presentation remote control such as 

TargusTM Model PAUM30, which has a distance range of up to 50 feet and thus 

permits the operator to hit the tendon at the required time without the need of an 

assistant. This while loop is followed by the module SI Start which starts the data 

acquisition once the start button is actuated. 
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Figure 13. Level 3, File Name Prompt  

 
Figure 14. Level 3, Ready to Record Prompt  
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 The next frame is a sequence structure in which the data from the buffer is 

read, producing a one-dimensional array of 16-bit intergers. A string “TEST IN 

PROGRESS” is assigned to info to be displayed on the front panel (Figure 15) 

while the data is being collected for the time assigned in subdiagram 0. 

 
Figure 15. Level 3, Test in Progress Prompt 
 

In the next sequence structure the one dimensional array containing the 

time domain signal is passed as input to module F(x) which computes the real 

Fast Fourier Transform. The resulting complex number is normalized with 

respect to the array size and separated into its polar components. The frequency 

magnitude is displayed on the front panel at a frequency spacing or resolution of 

~0.084Hz (Figure 16). The time domain signal is also displayed beside the 

frequency domain graph for the purpose of quality control.  If the data are 
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acceptable then the one-dimensional array containing the time domain signal is 

saved as a 257kB 16bit wave file.  

 
Figure 16. Time and Frequency Domain Graphs 

The Analyzer-M program was prepared as an executable file. Also, an 

executable program called WavePlayer-Mono (Figure 17) was made to retrieve 

the data from the wave files that were saved during the vibration tests; its block 

diagram is in appendix 5. Appendix 6 includes the program installation guide, the 

Step by Step Procedure to operate equipment and Analyzer-M software, and 

tendon preparation.  
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Figure 17. WavePlayer-Mono Front Panel    

2.4.2 Data Acquisition Board Method 

 The data acquisition board (DAB) method uses a LabVIEW-based 

program (ANALYZER-DAB) to acquire and analyze data from a 12-bit resolution 

NI USB-6008 data acquisition board. The program ANALYZER-DAB is similar to 

the program ANALYZER-M but several key differences exist in level 3 of the 

program (Appendix 7). Data acquisition in ANALYZER-DAB is controlled by a NI-

DAQmx Base 2.0 driver instead of the Sound Input VI used in the ANALYZER-M. 

 The number of samples collected by ANALYZER-DAB is 213 and the 

sampling frequency is 800Hz, therefore it has a frequency resolution of 

~0.0977Hz.  Also, the collected data are saved as a binary Single Precision 

Floats (SGL) file which requires 4 bytes per data sample, which is 32kb total file 
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size. An example of ANALYZER-DAB data collection quality is in Figure 18. The 

installation guide is in Appendix 8. An executable program called WavePlayer-

DAB was made like the WavePlayer-MON to retrieve the data from the SGL files 

that were saved during the vibration tests; the block diagram of WavePlayer-DAB 

is in Appendix 9. 

 
Figure 18. Front Panel Analyzer-DAB 

2.4.3 Digital Recorder Microphone Method 

Another method of acquiring the first fundamental tendon frequencies is 

by using a digital recorder microphone. Accelerometer, cables, and signal 

conditioner set up is like that of the previous methods but with the adapter cable 

coming from the signal conditioner connected to the microphone line input (mic). 

The digital microphone recorder to be used is a SONYTM ICD-P210. The SONYTM 

ICD-P210 allows you to save the recorder files in a PC as a 16bit 11000kHz 
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monaural wave file. The recording files are also easy to identify since their initial 

assigned names correspond to the microphone folder used, their recording 

position with respect to the other files, and the date and time of the recording. 

The recording files can be analyzed by using a Lab VIEW program Wave Player 

Micro which works in a similar way as WavePlayer-MON.  The block diagram of 

Wave Player Micro is in Appendix 10. A sample of data quality recording and 

analysis of the microphone method is in Figure19 with microphone sensitivity set 

to low and recording mode set to HQ. 

 
Figure 19. Wave Player Micro Front Panel                                                         
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Chapter 3 

Practical Vibration Evaluation Validation* 

 The practical vibration evaluation explained in chapter 2 to detect tendon 

tension was validated on nearly full-scale tendons constructed at the FDOT 

Structures Laboratory as part of an ongoing parallel investigation [10]. 

 A Tendon Test Facility (TTF) was constructed at the FDOT Structures 

Laboratory (FSL) in Tallahassee, FL. for large-scale model validation tests. The 

TTF had one fixed reinforced concrete anchor block (South end) and one 

movable anchor block (North end) with horizontal anchors approximately 9m 

away. The anchor assemblies were Type E manufactured by VSL. The fixed 

block had provisions for horizontal anchors at the same elevation as those in the 

movable block, allowing for straight horizontal tendons with a free length of ~9m 

(Figure 20). Tension was applied by displacing the movable block by the required 

amount with hydraulic jacks and than placing stops between the block and the 

end of the frame. Load cells monitored the tensioning force at the movable block 

end allowing for precise computation of the force. Two duplicate full length 

horizontal tendons (0A and 0B) were constructed. Both tendons had twelve one-

                                                 
*
Parts of the work in this chapter have appeared in A. Sagüés, T. Eason, C. Cotrim and J. Lopez-Sabando, “Validation 

and Practical Procedure for Vibrational Evaluation of Tendons”, Project No. BC 353#44, 158 pages, Draft Final Report to 
Florida Department of Transportation, University of South Florida, Tampa, Fl, December, 2007 [10]. 
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half in low-relaxation seven wire strands per ASTM A416 grade 1860 supplied by 

VSL.   

 
Figure 20. Tendon Test Facility 
 
 The design stretching stress capability was 1800kN, corresponding to 80 

% of the Guaranteed Ultimate Tensile Strength (GUTS) but actual  stretching 

stresses were typically  1500kN, (67% GUTS).  The strands were contained in a 

high density polyethylene (HDPE) duct type DR17 3 in NPS (8.9cm outer 

diameter with a wall thickness of 0.4cm).  Galvanized steel pipes 7.62cm internal 

diameter and 0.48cm wall thickness emerged from the end and deviation blocks 

and served as attachment points for the polymer duct by means of an 8.9cm 

inner diameter 15.24cm long Neoprene duct coupler. After stretching the 
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tendons, they were grouted with QPL-938 grout manufactured by Masters 

Builders using a colloidal pump. There was no indication of grout voids in any of 

the tendons constructed. Further details are given in [10]. 

 After a grout setting period of 7 days minimum, vibration testing was 

conducted on the free length(s) of the tendon. The vibration tests consisted of 

basic tests as explained in chapter 2, in which the tendon was impacted at a 

point 1/6 of the free length away from one of the blocks at either end of the free 

length of the tendon, and the accelerometer was placed at 1/3 of the distance 

from the same or opposite end of the tendon (Figure 21). 

 
Figure 21. Tendon Test Set Up[10] 

  Tendon impacts were conducted with a rubber hammer with a total mass 

of 611 grams. The accelerometer, Model 338B34 by PCB Piezotronics with a 
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sensitivity of 10.00 mV/g, was placed with its sensing axis attached to 45° from 

horizontal side of the tendon.  A flexible coaxial wire ~0.25cm diameter 

connected the accelerometer to a Model 480E09 signal conditioning unit by PCB 

Piezotronics, with a voltage gain set to 10x, resulting in a signal amplitude upon 

impact typically < 0.6V .  The signal was acquired using the Sound Card line 

input of a Model Latitude C840 computer by Dell and controlled by a LabVIEWTM 

program similar to Analyzer-M which was described in Chapter 2.  

 Input tendon parameters (Table 1) were obtained as explained in chapter 

2. Tendon tension approximation results (Table 2) indicates a small difference 

with the load cells (less than 4%) for both tendons (0A, 0B) for the experiments 

chosen for analysis. This result is consistent with the general level of agreement 

between vibrational and load cell tension estimates obtained in a broader 

investigation in progress [10], although results from particular test sequences 

may differ 

.  

Table 1. Tendon (0A, 0B) Input Parameters 
Segment L meters Strands mu S Test Mode 1 Mode 2  Test #
0B-South 9.279 12 17.5759 102477 1 15.65 32.05 0BBASSC

2 15.65 32.05 0BBASSD
3 15.65 31.88 0BBATSA
4 15.65 31.88 0BBATSB

0B-North 9.279 12 17.5759 102477 1 15.65 32.05 0BBASNA
2 15.65 32.05 0BBASNB
3 15.65 31.88 0BBATNA
4 15.65 31.88 0BBATNB

0A-South 9.319 12 17.5759 102477 1 16.16 32.8 0ABASSA
2 16.16 32.8 0ABASSB
3 16.35 32.8 0ABATSA
4 16.41 32.8 0ABATSB

0A-North 9.319 12 17.5759 102477 1 16.24 32.8 0ABNASA
2 16.24 32.8 0ABNASB
3 16.24 32.8 0ABNATA
4 16.24 32.8 0ABNATA  
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Table 2. Tendon (0A, 0B) Results 
 

 
 
 

 

Results
Segment Avg Tension (kN/strand) Quality% Load Cell (kN/strand) % Difference

0B-South 109.17 1.86 113.14 3.6

0B-North 109.17 1.86 113.2 3.6

0A-South 118.30 0.77 122.28 3.3

0A-North 118.07 0.37 121.8 3.1
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Chapter 4 

Early Warning Corrosion Probes Methodology* 

4.1 Test Environments 

 Controlled humidity chambers were constructed using lidded glass fish 

tanks. The dimensions of the glass chamber were 51x31x26cm, total volume of 

39000cc.  

A 95% RH environment was implemented by adding 266gr of NaCl 

(common salt) to 3 liters of distilled water at the bottom of the chamber. The 

concentration of NaCl to water was calculated using equation (5) derived by 

Cinkotai (1971) [15]. Where Cs=ms/(ms+mw), and ms, mw are the mass of 

solute and water, respectively.  

                        255.14867.01 CsCsRH ×−×−=      (5) 

     This steady state RH should be stable over the experiment’s length even if the 

lid of the chamber is removed for short periods of time. The mass of water vapor 

present in the air inside the chamber at 95% RH and 23° Celsius was calculated 

to be 0.81g [16]. The latter is an insignificant amount compared with the 3000g 

total mass of water in the chamber so lost water can be replenished by 

                                                 
* Parts of the work in this chapter have appeared in L. Taveira, A. Sagüés, J.Lopez-Sabando, and B. Joseph, “Detection 
of Corrosion of Post-Tensioned Strands in Grouted Assemblies”, Project No. BD544-08, 71 pages, Final Report to Florida 
Department of Transportation, University of South Florida, Tampa, Fl, October 31, 2007 [14]. 
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evaporation without substantial change in the solution composition.  The above 

estimation is based on the following equations: 

     
vaporv
Vm =                        

v
vapor P

TRv ×=               gv PRHP ×=       (6) 

Where m is the mass of water vapor, V is the volume of air, vvapor is the saturated 

vapor specific volume, R is the water gas constant (461.5J/(kg K), T is the 

temperature in Kelvin, Pv is the partial pressure of water vapor, RH is the relative 

humidity, and Pg is the saturated water pressure at 23° Celsius (2.82kPa). 

 The 75% relative humidity was accomplished by introducing inside the 

chamber 1.0 liter of water saturated with sodium chloride (NaCl) [17]. 

4.2 Electrochemical Probes  

 An atmospheric corrosion electrochemical test array was designed and 

constructed using a methodology inspired by that of Mansfeld and Kenkel [18]. 

The probes consist of two 5mm diameter steel wires extracted from an ASTM 

A416M-98 high strength strand. The wires were 0.508cm diameter and 10.5cm 

long. Both wires were attached parallel to each other, with a gap between them 

of 0.6mm.  Plastic spacers at the end of the probes kept the two wires 

electronically isolated from each other. A thin, stainless steel wire <1mm 

diameter was spot welded to the end of the each wire probe to permit external 

measurements.  Two probes with the afore mentioned characteristics were made 

and immersed in fluid, 0.42 water/cement ratio grout (type 1 Portland cement) 

and then lifted, forming upon curing a thin grout layer on the surface and across 

the gap. The length of the probes covered with grout was 9.0cm, with the 
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extremes of the wires uncovered by grout [Figures 22, 23]. Another two probes 

were made three days later with similar characteristics but with a gap between 

the wires of 1.0 mm, and a thicker layer of grout covering the wires. 

 The grouted probes were cured in a 100% RH glass chamber for a day 

and inserted afterwards into the 95% RH chamber at a temperature of 23±2°C. 

Holes were made and then caulked in the lid of the chamber for the stainless 

steel wires attached to the probes to allow external measurements of the probes 

without disturbing the corroding conditions inside the chamber.  

      

 
Figure 22. Electrochemical Probe Before Grouting 
 

 
Figure 23. Grouted Electrochemical Probe 
 
4.3. Electrical Resistance Probes  

 The Electrical Resistance (ER) method is another corrosion monitoring 

approach. ER probes use the simple principle of an increase in electrical 

resistance produced by a decrease in the section thickness of the metal as it 

corrodes. Two different ER probes were developed in this study.  The first 
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generation ER probe contained two identical plain low carbon steel rebar tie 

wires 120cm long and 1.60mm diameter, in the “as-received” condition (dark mill 

scale on the metal surface). One of the wires, the working element, was exposed 

to the corrosive atmosphere inside the chamber. The other, the reference 

element, was protected by sealing it inside the probe body (pvc pipe) from the 

corrosive medium. The covered wire provided a reference for evaluating changes 

in the uncovered wire and also served to compensate for the effects of 

temperature changes on resistance (Figure 24). The latter can be an important 

source of error, as the resistivity of steel varies roughly by 0.3% for every 1°C 

change near ambient temperature [19]. 

 

To signal conditioning amplifiers

Exterior Wire
Interior Wire

 
Figure 24. ER Probe Interior Design 

 The corrosion rate (Corrrate) of ER probes can be determined by the radius 

change of the corroding wire (Δr) over its exposed time in days (t) and multiplied 

by 365(days/year): 

    trCorrrate 365⋅Δ=                          (7) 
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  A 60Hz AC, 80mA excitation current was created with a 21V output 

transformer in series with a 260Ω resistor and the probe. The resistance of each 

wire was ~0.8Ω, resulting on only ~10mW total probe power dissipation, a 

negligible amount of heat production rate considering the dimensions of the 

probe.  Two 100X amplifiers and a 0.1mV A.C resolution multimeter were used to 

measure the potential drop across wires. The sensitivity of this probe was 

calculated to be 1/1428 parts (0.6μm) of the corroding wire radius. The above 

estimation is based on the following equations: 

 

Probe sensitivity = rcorr/ro                                                        (8a) 
 

focorr rrr −=        (8b) 
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⎥⎦

⋅

          (8c)                                                

 

where E is the minimum drop in potential that can be detected (0.05mV), I is the 

current in the circuit, L is the length of the wires, ρ is the resistivity of steel, ro is 

the original radius, rf is the final radius after corroding, and rcorr is the change in 

radius due to corrosion that can be detected. 

 Two ER probes with the above mentioned characteristics were tested only 

in the low RH (75%) insulated glass chamber at a temperature of 23°±2°C, 

mainly to check operation at the electronic signal acquisition system as corrosion 

rates were very low in that environment.  
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 A second generation of ER probes was later designed to simplify 

measurements and improve sensitivity. A potentiometer was added to the earlier 

design to create a bridge as a way of measuring the change in the resistance of 

the corroding wire [Figure 25]. The bridge was initially balanced (Vout = 0) by 

adjusting the potentiometer, so the resistance ratio of the probe wires was the 

same as that of the potentiometer. The initial resistance ratio, Rout / Rin (see 

Figure 25), of the probe was nearly 1. From that initial condition, when the wire 

corrodes the resistance increases by a factor of (1+P). P is a function of the input 

voltage (Vin) and output voltage (Vout), according with the relationship below 

(equation developed in appendix 11).  

                                
outin

out

VV
V

P
⋅−

⋅
=

2
4                  (9)          

 The corroding wire radius ( )corrr  can be calculated by the following equation:    

                           ( )Prr ocorr +⋅= 11                       (10)     

Where or  is the original radius of the wire, Equation (10) is derived in Appendix 

12.     

 For a constant supply voltage from the transformer, the input voltage 

shouldn’t change over time since the increase in the resistance of the corroding 

wire is negligible in comparison with the resistance of the whole assembly.   If the 

input voltage is known a priori, P can be calculated by just measuring the bridge 

output voltage. 
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Figure 25. Schematic of ER Probe.  
A 0.03μF capacitor was placed across R2 to minimize phase shift.  
 

 Since the input voltage is not constant, because of fluctuation in the power 

grid, input and output voltages need to be measured at the same time for an 

accurate calculation of P. To measure simultaneously the input and output AC 

voltage across the bridge, a Lab ViewTM program P-Measurements was 

developed. Other components of the data acquisition system are: a data 

acquisition board (DAB) and a 100-gain amplifier to condition the signal between 

the bridge voltage divider and the acquisition board. 

 The block diagram developed to measure the bridge input and output 

voltage is shown  in the Appendix 13. The P-Measurements program consists of 

three parts, the first part configures the DAB and converts binary counts to 

engineering units, the second part performs voltage measurements, and the third 
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part analyzes the data and calculates P. The front panel of the P-Measurements 

program (Figure 26) lets you choose the voltage range and displays the RMS, 

average voltage peaks and P. 

Figure 26. Front Panel of The P-Measurements Program 

 The data acquisition board used for this task was an USB-1608FS from 

Measurement Computing, with a 16-bit precision (0.03mV resolution error). The 

sampling rate was set to 24000Hz and the number of samples was 6000. 

 Another improvement was placing a ~0.03μF capacitor (value selected by 

trial and error) across the potentiometer arm R2 until there was nearly zero 

phase shift across the Vout terminals. Without that capacitor a small phase shift, 

due to the mutual inductance of the internal and external coiled wires and the 

magnetic properties of steel, was present which prevented obtaining a sharp null 

during initial adjustment. The probes were made with counter turn coils to 
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minimize induction effects, but the capacitor was still needed for improved 

compensation. The resulting system imbalance sensitivity was ~0.005mV, 

corresponding to a detectable change of corroding wire radius in the order of 1 

part in 4000 (0.2μm).   

 Four of this second generation ER probes were made and placed in the 

95% RH glass chamber described earlier for the Electochemical probes.  Two of 

the ER probes were dipped in grout as described earlier for the Electrochemical 

probes. 

4.4 Probe Materials Characterization 

     Metallographic examination of the strand wires (ASTM A416) and the steel tie 

wires cross sections was conducted to reveal and compare their microstructures. 

The specimens were mounted metallographically, ground, fine polished to a 

0.05μm alumina suspension finish, and etched with 2% nital solution. The 

micrographs in Figure 27 reveal the fine eutectoid pearlitic microstructure of the 

high strength PT wires, and the nearly all ferrite (low carbon) microstructure of 

the softer steel tie wires These structures were as expected and the tests served 

to confirm the identity of the probe materials. 

4.5 Gravimetric Measurements 

Gravimetric measurements were conducted to compare against the 

results of the Electrochemical and ER probes to verify their reliability. The weight 

loss experiments were conducted with bare and dip-grouted wires. The tests 

included 20 helically shaped outer wires extracted from actual 7-wire steel 

strands from the same stock used for the Electrochemical probes, and 8 low 
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carbon steel tie wires with mill scale as used for the ER probes. The specimens 

grouted by dipping were processed as for the other tests, and cured for 2 days 

inside a 100% RH chamber before introducing in the 95% RH chamber. 

The helically shaped wires were 0.508cm in diameter and 35cm long; the 

steel tie wires were 0.16cm in diameter and 46cm long. Before and after the test, 

the strand and tie wire specimens were cleaned per ASTM G1 and then weighed 

to 10-3 and 10-5 grams precision respectively.  

 
ASTM A416      Metallography    ER probe wire 

 100 µm 

100 µm 100 µm 

100 µm 

Cross Section

Transverse Section

Fine eutectoid Pearlitic  
microstructure 

Microstructure of High-Strength PT Wire (Eutectoid) and Steel Tie Wire ER 
Probe Wire (Low carbon steel). 

Nearly all Ferrite

 
Figure 27. Probe Materials Characterization 
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Chapter 5 

Early Warning Corrosion Probes Results and Discussion* 

5.1 Electrochemical Probes  

The Electrochemical probe system, illustrated in cross section in Figure 28 

can be approximated as behaving as the equivalent circuit in Figure 29. 

Grout film

Grout bridge 

Wire 1 Wire 2

 
Figure 28. Schematic of Electrochemical Probe Cross-Section 
 

 

 

 

 

 

Figure 29. Electrochemical Probe Equivalent Circuit 

                                                 
*
Parts of the work in this chapter have appeared in L. Taveira, A. Sagüés, J.Lopez-Sabando, and B. Joseph, “Detection of 

Corrosion of Post-Tensioned Strands in Grouted Assemblies”, Project No. BD544-08, 71 pages, Final Report to Florida 
Department of Transportation, University of South Florida, Tampa, Fl, October 31, 2007.[14]. 
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Ci are constant phase angle elements, of admittance Y = Y0i (j2πf)n, representing 

the interfacial capacitance of the metal-grout interface of each wire (Y0i and n are 

the constant phase angle element parameters [20],[21]), RP is the polarization 

resistance of that interface, and CS and RS represent, respectively, the dielectric 

capacitance and ohmic resistance of the grout bridge, the former of which was 

found to be not negligible for the system and frequency range examined. For 

simplicity the two metal-grout interfaces were assumed to behave similarly. Thus, 

the measured impedance could be represented by a single Cm-Rm parallel 

combination (where Rm=2RP, and Cm is a constant phase element with 

parameters Y0m=Y0i/2 and n) in series with the CS - RS parallel combination as 

shown in Figure 30. 

 

Figure 30. Simplified Equivalent Circuit for the Electrochemical Probe 

      EIS measurements of the Electrochemical probes were carried out at the 

open circuit potential (OCP) with 10mV RMS amplitude in the frequency range 

 
Cm  Cs

Rm  Rs
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from 100kHz to 10mHz, to determine polarization resistance and corrosion 

currents of the probes. The experiments were performed periodically during 264 

days. Both experiments were performed using Parstat™ 2263 from Princeton 

Applied Research, Oak Ridge, U.S.A. and Gamry™ PCI-4 from Gamry 

Instruments, Warminster, U.S.A. potentiostats. The electrochemical parameters 

were estimated by using the programs Gamry Echem Analyst™ from Gamry 

Instruments, Warminster, U.S.A or Zview2™ from Scribner Associates, Inc., 

Southern Pines, U.S.A. The reference and counter-electrode were connected to 

one wire of the probe and the working electrode to the other one, so the 

impedance measured corresponded to the wire-grout-wire series combination. 

Other records were temperature and relative humidity inside the chamber. 

     Examples of EIS results for 1mm and 0.6mm gap electrochemical probes 

exposed to the 95% RH environment are shown in Figure 31. Two depressed 

semicircles can be distinguished. The first semicircle corresponds to RS and CS, 

while the second is related to Rm and Cm as discussed above and illustrated in 

Figure 32. Because the grout resistance-capacitance component has a very 

short time constant, the analysis to determine the circuit parameters relevant to 

the polarization of the corrosion reactions was limited to the frequency interval 

10mHz to 1Hz, where the effect of Cs is small. Thus, the equivalent circuit used 

for the actual EIS data analysis had RS, Rm and Cm as the only fit parameters and 

the results in the following are discussed in terms of the parameter values for one 

of the interfaces.  
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Figure 31. EIS Behavior of (a) 1mm Gap and (b) 0.6mm Gap Probes. 
The solid line indicates the model fitting.  
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Figure 32.  EIS Interpretation    

  

 Treating the reactions in the system as if they were under simple 

activation polarization, the corrosion rate can be estimated by the Stearn-Geary 

relationship (equation 11) between RP and the corrosion current density (icorr).    
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where βa and βc are the Tafel slopes ~ 0.12V [20],[22]. 
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     Another important parameter is the solution resistance (RS). The solution 

resistance or grout resistance (equation 12) is on first approximation proportional 

to the resistivity of the grout (ρ), the cross section area of the grout between 

wires (A), and the distance between wires (d). 

                               
A
dRs ×= ρ                    (12) 

     The actual system is more complicated (Figure 28), but for a fixed effective 

distance between wires, the resistivity of the grout can be determined if an 

effective area is known, and vice versa. For probes with similar grout, distance, 

and conditions such as RH and temperature, their solution resistance can be 

assumed to be equal to the inverse of their effective contact areas multiplied by a 

constant. 

       The RS and the RP trends for the 1mm gap electrochemical probes exposed 

to 95% RH environment are shown in Figure 33. Upon initial exposure to 95% 

RH the RS and the RP values were small, but then increased drastically tending 

to stabilize after ~50 days. The increase in Rs likely reflects the establishment of 

a less interconnected pore network in the grout as curing matures. Other factors 

that can alter the resistivity of the grout are temperature and the relative humidity. 

Figure 34 shows that the values for RP in the 0.6mm probes were in the same 

order as those for the 1mm probes, but not as stable. The values of Rs were 

about one order of magnitude greater than those for the 1mm gap probes and 

less stable as well. 
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Figure 33. RS and RP Trends for Duplicate (No.3 and 4) 1mm Gap 
Electrochemical Probes 
  

 
Figure 34. RS and RP Trends for Duplicate (No.2 and 0) 1mm Gap 
Electrochemical Probes  
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     Polarization resistance can also be determined by the linear polarization 

resistance (LPR) technique. The LPR method is based on the relationship 

between small amplitude applied polarization potentials and the corresponding 

polarization current of a corroding system. The LPR experiments were conducted 

using the Gamry PCI-4 Potentiostat at 0.1mV/s, starting from the OCP to an 

overpotential of 10mV in the cathodic direction. A typical LPR potential-current 

curve of a 1mm gap electrochemical probe is shown in Figure 35. The results of 

the LPR measurements are not straightforward since the experimental 

arrangement to measure the polarization resistance can only directly sense the 

values of the total voltage and the total applied current without distinction of the 

current demanded by any element of the system [23]. Therefore, to determine 

the corrosion currents values a refined RP (LPR-RP) value was calculated. The 

LPR-RP values were compensated for RS and for the presence of interfacial CPE 

behavior using the corresponding parameters obtained from the EIS 

measurements. The compensation was made by first subtracting an amount 

equal to I•Rs from the potential V at each point of the measured current (I) - V 

curve obtained in the LPR test, thus obtaining an ohmic resistance-compensated 

curve I-Vcomp. The correction for the current demanded by the CPE used the 

following relationship [20, 23]: 

 1
max )]1(//1[ −− −Γ⋅⋅+= nVSYRR nn

opap                                    (13) 

where Vmax is the maximum compensated potential applied, S is the scan rate 

(0.1mV/s), Γ is the Euler´s Gamma function, and Rap is the apparent RP 

determined by the slope at V=Vmax of the I-Vcomp curve, and Y0 and n are the CPE 
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parameters obtained from an impedance experiment performed shortly before or 

after the test. It is noted that the correction represents only a first approximation 

as it does not take into consideration the convolution resulting from the 

simultaneous presence of the RS and the CPE [20],[23]. 

 

 

 
Figure 35. I-Vcomp Curve of 1mm Gap Electrochemical Probe  
 
 

                 
      Figures 36 and 37 show comparable relative trends for the RP values 

estimated by LPR and EIS methods for both the 1mm and 0.6mm gap probes, 

but the RP obtained from LPR tended to be lower than those ones from EIS 

(EIS-RP) by about a factor of 2. 
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Figure 36. RP Values Estimated by LPR and EIS Methods for Duplicate 
Probes with 1.0mm Gap   

1.E+04

1.E+05

1.E+06

1.E+07

200 220 240 260 280

t (days)

R
p 

(Ω
)  

 .

Rp EIS2
Rp EIS 0
Rp-LPR 0
Rp-LPR 2

 
Figure 37. RP Values Estimated by LPR and EIS Methods for Duplicate 
Probes with 0.6mm Gap   
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      Corrosion current Icorr values were calculated by the Stearn-Geary 

relationship (equation 11), assuming that both wires were corroding equally. The 

corresponding nominal corrosion rates were estimated per equation (14) 

assuming an area of 8cm2 for the metal in effective contact with grout on each of 

the probe wires. That area value was estimated by making the rough assumption 

that all the excitation current flows through the one-half of the wire perimeter 

facing the other wire. The time evolution of Icorr for both types of electrochemical 

probes is shown in Figure 38 and 39. The Icorr values were, in general, larger in 

the first days of exposure but after several days decreased to ~0.3μA and 

~0.1μA for 1mm and 0.6mm gap probes, respectively. The Icorr for 0.6mm gap 

probes were less stable than those of the 1mm gap probes, reflecting the 

instability of the estimated RP values noted before.  

 The instantaneous corrosion rate was calculated by the Stearn-Geary 

relationship introduced earlier (Equation 11) and by the Faradaic conversion 

formula (equation 14). 

  )/( AFnMI
dt
dW

corr ⋅⋅⋅=                                        (14)  

where W is the mass lost of the corroding metal in g/cm2, t is the time in seconds, 

M is the atomic mass of iron 55,845g/mol, A is the effective area, n is the valence 

of iron (2), and F is the Faraday’s constant 96,485C/mol. The result is converted 

to cm/y (later expressed as μm/y) by dividing the mass by the density of iron 

7.87g/cm3. While there is considerable uncertainty in the effective area of these 
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specimens and from the other simplifying assumptions used, the results suggest 

that corrosion rates estimated by this method were in the order of ~0.3μm/y. 

 
Figure 38. Icorr Trends of Electrochemical Probes with 1.0mm Gap 
 

 
Figure 39. Icorr Trends of Electrochemical Probes with 0.6mm Gap  
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5.2 Electrical Resistance Probes 

The cumulative (i.e. averaged from the beginning of exposure until an 

exposure time t) corrosion rate of ER probes in μm/year was determined by: 

 trCR 365⋅Δ=               (7) 

where Δr is the radius change of the corroding wire in μm (rinitial - rcorr) and t is the 

exposure time in days.  

An instantaneous (actually short interval) corrosion rate can be calculated by 

evaluating equations (10) and (7) using the short interval ∆t between two 

measurements, and using the first measurement as the initial condition.  

The instantaneous and cumulative corrosion rate trends for grouted and bare 

ER probes exposed to the 95% RH environment are shown in the Figures 40 and 

41. Higher corrosion rates were observed in the first days of exposure especially 

for the bare steel probes but after 50 days the rates for both conditions reached a 

plateau of ~5μm/y. The fluctuations of the instantaneous corrosion rate may be 

attributed to the resolution of the individual measurements and/or minor 

temperature and RH fluctuations. The cumulative corrosion rates for ER probes 

had comparable decreasing trends. After 98 days the cumulative corrosion rates 

were 12μm/y and 24μm/y for grouted and bare ER probes respectively, reaching, 

after 196 days, 8μm/y and 15μm/y. 
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Figure 40. ER Probes Instantaneous Corrosion Rate 
 

 
Figure 41. ER Probes Cumulative Corrosion Rate 
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In the 75% RH chamber none of the specimens examined experienced 

measurable corrosion rates, so that condition served as a baseline control. The 

result is consistent with the expectation that exposure at 75% RH does not meet 

the conditions necessary to trigger atmospheric corrosion. For bare metals that 

condition is typically encountered above 85% RH [24], consistent with the 

present results.  

5.3 Gravimetric Measurements 

The weight loss measurements yielded results comparable to those of the ER 

probes as illustrated in Figure 42. After 98 days of exposure the average 

corrosion rate for grouted and bare helically shaped wires were 11μm/y and 

12μm/y respectively, and 10μm/y and 11μm/y after 196 days. The average 

corrosion rate for bare steel tie wires was ~ 13μm/y after 98 and 196 days of 

exposure. 
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Figure 42. Corrosion Rate of Grouted and Bare Steel Strands Exposed  
to a 95% RH, Estimated by Weight Loss Measurement 
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5.4 Early Warning Probes Discussion 

The observation of rust on some electrochemical probe wires clearly indicated 

that significant corrosion was taking place in the 95% RH chamber. However, the 

electrochemical probe apparent corrosion rates were one order of magnitude 

lower than those obtained by ER or weight loss. This discrepancy may be 

attributed in part to uncertainty in estimating the effective probe area in contact 

with grout. That area may be much less than the nominal assumed value 

because of cracks in the grout or disbondment at the grout-metal interface, thus 

greatly underestimating the actual rates over the remaining area of contact. 

Another likely cause of insensitivity would be that the assumption of equal 

electrochemical behavior at the two metal-grout interfaces in a probe is wrong. If 

corrosion were to start at only one of the interfaces with the other largely in the 

passive condition, then the total series impedance would still be very large and 

the corresponding apparent current density would stay low until both wires are 

simultaneously in the active condition.    

The ER probes and weight loss measurements showed evidence that at 

95% RH the corrosion rates were considerably high. That rate was expected from 

the relatively thin effective electrolyte layer present on the metal surface in the air 

space case. The grout film was not particularly protective, as shown by similar 

corrosion rates in the bare steel and grouted specimens. Tests, after long 

exposure times, with pH paper and sprayed phenolphthalein on the grout film on 

probes in the 95% RH chamber indicated a near neutral pH, meaning that the 

thin layer of hardened grout had eventually carbonated in the chamber 



www.manaraa.com

 56

environment. Thus, the grout no longer had passivating properties to the steel 

and it is not surprising that measurable corrosion was taking place. This was 

further confirmed by direct observation of rusting on ER, weight loss and even 

some of the electrochemical probe wires. 

The worst-case surface-averaged corrosion rate values observed in the 

high humidity chamber (about 10μm/y), if sustained over 10 years would 

correspond to an average loss of diameter of 200μm, or about 8% reduction in 

cross-sectional area in a 5 mm diameter wire.  Such a loss may already be 

considered of concern even if it were uniform, considering that one decade is a 

relatively short time compared to typical design life goals (e.g. 75years). As 

corrosion is likely to show some degree of localization, critical loss of strength 

could occur even earlier. Thus, these findings highlight air space corrosion as a 

potential cause of strand failure. 
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Chapter 7 
 

Conclusions 

 A simplified test and analysis procedure for rapid screening of structures 

with commonly encountered tendon configurations was developed and validated 

on nearly full-scale tendons constructed at the FDOT Structures Laboratory. 

 The developed practical vibration tendon tension approximation was 

validated against nearly full-scale tendons, showing less than 4% difference 

between the tension obtained by the simplified vibration method and independent 

measurements from load cells. 

 Electrical Resistance (ER) probes customized for PT anchor air space 

conditions were constructed and their operation with readily available electronic 

instrumentation was demonstrated. The probes showed adequate sensitivity to 

detect the corrosion rates of interest, and the results were validated against 

direct gravimetric measurements. 

 Electrochemical probes for EIS and LPR measurements in PT anchor air 

space conditions were constructed and their operation with readily available 

electronic instrumentation was demonstrated. However, sensitivity may be low 

and the interpretation of the electrochemical probe results needs to be refined to 

better assess their usefulness.  
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 There was good correlation between EIS and LPR measurements 

showing that the latter, simpler method has good potential for practical 

implementation. 

 Simulated air-space corrosion experiments showed that an aggressive 

environment may evolve in the grout void even on strand wires covered with a 

residual hardened grout layer, resulting in corrosion rates that may have 

damaging effects in a relatively short service time.  
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Appendix 1: Level 1 Block Diagram of Analyzer-M 

 
Figure 43. Analyzer-M Level 1Block Diagram A 

 
Figure 44. Analyzer-M Level 1Block Diagram B 
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Appendix 2: Level 2 Block Diagram of Analyzer-M 

 
Figure 45. Analyzer-M Level 2 Block Diagram A 
 

 
Figure 46. Analyzer-M Level 2 Block Diagram B 
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Appendix 3: Level 3 Subdiagram 0 of Analyzer-M 

 
Figure 47. Analyzer-M Level 3 Subdiagram 0 Block Diagram A 
 

 
Figure 48. Analyzer-M Level 3 Subdiagram 0 Block Diagram B 
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Appendix 4: Level 3 Subdiagram 1 of Analyzer-M 

 
Figure 49. Analyzer-M Level 3 Subdiagram 1 Block Diagram A 

 
Figure 50. Analyzer-M Level 3 Subdiagram 1 Block Diagram B 
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Appendix 4:(Continued) 
 

 
Figure 51. Analyzer-M Level 3 Subdiagram 1 Block Diagram C 
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Appendix 5: WavePlayer-Mono block Diagram 

 
Figure 52. WavePlayer-Mono block Diagram A 

 
Figure 53. WavePlayer-Mono block Diagram B 
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Appendix 6:  Analyzer-M Instructions [10] 

    INSTRUCTIONS FOR INSTALLATION / UN-INSTALLATION OF ANALYZER-

M.EXE   

Install:    

1. If Windows Explorer is not already configured to show file extensions, 
configure your Windows Explorer to always show file extensions. 

2. Install LabVIEW Run-time Engine 7.1 if LabVIEW 7.1 or higher is not 
installed in the computer. 

3. Go to M-remote folder in the Installation CD. 
4. Navigate to the Installer folder inside M-remote folder. 
5. Click on install.msi and follow the instructions in the WIZARD. 
 

i. During the installation process, the setup will display the 
location where the program will be installed. The 
“Destination Folder” item should display EXACTLY  
“c:\ANALYZER-M” (and NOTHING ELSE) as the path for the 
destination of the program. If it does not, navigate to the 
folder “c:\ANALYZER-M” using the “Browse” button located 
on the right hand side of the setup window.   

 
6. After installation is complete, locate the file ANALYZER-M.EXE (it should 

be located in the folder “c:\programs\ANALYZER-M” or go to the start 
menu and choose programs) and create a shortcut for that file on the 
desktop.  

7. A simplify way to install the program would be to copy the file ANALYZER-
M.EXE from the M-remote folder and paste on the desktop. 

 
Un-Install: 

1. In the Installation CD, navigate to  M-remote\Installer folder, click on 
install.msi 

2. Follow the instructions in the wizard. 
 
 
Imp. Note: In the un-installation process, the wizard should indicate that the 
process is indeed un-installation, not an installation. 

Run-Time Engine installation 

From the installation CD run LVRunTimeEng 7.1.exe to install the LabVIEW 7.1 
Run-Time Engine. 
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Appendix 6:(Continued) 
 
TENDON VIBRATIONAL TESTING STEP-BY-STEP PROCEDURE  
Prepared by University of South Florida - All Rights Reserved  
 
A. EQUIPMENT AND SETUP FOR ANALYZER-M 
 
Minimum items required: 

1. Laptop DELL LATITUDE 840 computer with Analyzer-M software 
2. Memory stick with at least 1GB of empty space for “drag and drop” 
operation. 
3. 110 V 60Hz AC Power Source adequate for computer  
4. Thermometer to record ambient temperature 
5. Long (100 ft) and accurate measuring tape 
6. Log Form binder/clipboard/ballpoint pens.  
7. Accelerometer Kit Box containing 
 7a. Accelerometer (PCB 338B34) 
 7b. Accelerometer Extension Cable 
 7c. Sensor Signal Conditioner (ICP – Model 480E09) 
 7d. Stereo Adapter Cable 
 7e. Spare 9V Alkaline Batteries (bag of 3) 
8. BNC Black Extension Cable (2 50-ft sections with 2 Female-Female 
couplers) 
9. Hammer 
10. Tuning Fork   
11. Wireless presentation remote (Targus, model PAUM30).  
12. Card Table and Stool - essential for accurate work. 
13. Adequate lighting 

 
Note:  Items 1,7 and 8 must be on site in duplicate to provide full spare backup.  
 
Physical arrangement (see Figure 1): 
 
a) Set up Card Table centrally in the Test Station area chosen, so the 

computer screen is within easy view from the impact position . 
 
b) Set up power source outlet next to Card Table. 
 
c) Ensure that accelerometer wiring can run unobstructed to each of the 

accelerometer locations in the Test Station.  Ensure that operator 
movement does not result in tripping over wires or equipment falling down. 

 
d) Place DELL Computer and Log Form on Card Table. Leave space 

also for tuning fork. A comfortable working space is essential for 
reliable operation and record keeping.  
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Appendix 6:(Continued) 
 
e) Make sure that cooling fan in computer is not obstructed.  
 
Equipment is now ready for operation.  Proceed To Part B, System Startup and 
Pre-Test Steps. 
 
 
 
                       B. SYSTEM STARTUP AND PRE-TEST STEPS 
 
READ EACH STEP COMPLETELY BEFORE ACTING 
 
Step 0. Span and tendon segment ID and preparatory measurements 
 
See ADDENDUM 1 for ID procedures and preparatory work. 
 
Step 1. Set up computer:  
 
1.1  Write down Test Station number (for example 07) on Log Form.   

 
1.2 Power up and boot up computer.  Record on Log Form designation of 

computer being used.   
 
1.3 Perform audio input setup check: 
 
 Perform once at beginning of shift.  Perform also if machine was operated 
by  others during shift or if abnormal test results are observed.   
 

On desktop, double click Volume Control icon 
Ensure Mute All is selected. 
Ensure Line In Volume is all the way up and not muted. 
Click  Options, Properties. 
Click Recording, then OK. 
Ensure Stereo Mix Volume is all the way up. 
Ensure Stereo Mix Select  is clicked. 
Ensure nothing else is selected. 
Close window. 

 
1.4 Double-click ANALYZER-M  icon on desktop. After Logo appears, press 

F2 and choose OK or Cancel conditions.  If OK is chosen, the operating 
panel shows up on screen. Turn Caps Lock on.  

 
Step 2. Wire accelerometer, Sensor Signal Conditioner, and connection to 

computer.  Check/replace Sensor Signal Conditioner batteries:   
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 Remove from Accelerometer Kit Box #1 the Accelerometer.  [Use parts in spare Kit 
Box #2 only if parts in #1 fail].  Record on Log Form Serial Number (SN) of  
 
 accelerometer being used.  The Accelerometer  is a precision instrument.  
Handle it gently and do not drop. 
 
 Connect Accelerometer  to  white Accelerometer Extension Cable .  Turn 

“floating clamp nut”, never the accelerometer as that may damage 
connector pin. Do not kink or stress Accelerometer Extension Cable.   

 
 Connect Accelerometer Extension Cable to BNC Black Extension Cable  

with provided adaptor.  If only one 50-ft length is sufficient, store away the 
other 50-ft length. Do not use cables to pull on or hold equipment! 

  
2.2 Connect other end of BNC Black Extension Cable to XDCR jack on 

Sensor Signal Conditioner.  Verify that Sensor Signal Conditioner controls 
are as follows: 

 
  Gain:   10 
  Red Rocker:  Press right side (ON) and let go. 
 
2.3 Connect  Stereo Adapter Cable to SCOPE on Sensor Signal Conditioner 

#1.   
 
2.4 Connect other end of Stereo Adapter Cable to LINE INPUT of computer.   

MAKE SURE NOT TO USE THE MICROPHONE INPUT.  For easier 
identification, the LINE INPUT has been marked by a white ring. 

 
2.5 Check batteries by momentarily pressing right side Red Rocker in Sensor 

Signal Conditioner all the way down.  Meter should point to the “BATT OK” 
region.    If it doesn’t, replace all three batteries (open box by loosening 
Phillips-head screw on back).  

 
2.6 After verifying the batteries are OK, check that needle in Sensor Signal 

Conditioner is in green region.  If it isn’t, check cables, accelerometer and 
connectors and reconnect/replace until condition is remedied.  

 
Step 3. Place accelerometer on Tuning Fork 3: 
 
 Attach accelerometer with wax securely and precisely between scribe 

marks on Tuning Fork 3.  Route Accelerometer Extension Cable loosely  
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through the back of the tuning fork so cable does not touch vibrating beams or 
interferes with accelerometer motion. 
 
 
Step 4. Run Tendon Test program section and acquire Tuning Fork 

vibration data. Examine response: 
 
4.1 Press (CTRL+R). Press F3.  A File Save window appears on screen. Type 

XXT (where XX is the Test Station designation, for example 07 and the 
letter T indicates Tuning Fork test).  DO NOT ENTER ANY FILE 
EXTENSIONS OR ALTER THIS PROCEDURE IN ANY WAY. Press 
ENTER. 

 
 Note: this does not cause a file to be saved yet.  It only prepares 

the system to save the result of the test under the file name 
chosen, if the test is completed successfully.  

 
4.2  Gently place 1/2 inch dowel crosswise just inside Tuning Fork end until 

dowel touches stop screw. 
 
4.3 Press  F3 or use the wireless remote to press the PUSH BOTTON display 

on the computer screen  (“TEST IN PROGRESS” appears on screen).  
Immediately start counting: one-thousand-one, one-thousand-two, so as to 
have a 2-second wait. Immediately following, pull dowel straight out (along 
main axis of tuning fork) in one quick motion and without introducing 
torque.   The data acquisition stops automatically 12 seconds after 
pressing F3.   

 
 Do not touch anything while the “TEST IN PROGRESS” message shows. 
 
 A short while later the test output will appear on the screen. 
 
4.4 a) The frequency plot should show a clear peak at about 33 Hz (electric 

noise may also cause another peak near 60 Hz; ignore it).  
 b) Press TAB repeating as needed to select RANGE box.  Pressing the 

UP or DOWN keys causes the spectrum to zoom into a 10 Hz wide 
window that shifts in 5 Hz steps  (window cycles to full width after multiple 
steps). Move the zoom until it includes the peak near 33 Hz. Read the 
peak frequency as shown in the “Peak” box.  Peak frequency for Tuning 
Fork 3 should be a value from 33.8 Hz to 34.0 Hz.  

 c) Read the peak height, as indicated in the vertical axis.  Height for 
Tuning Fork should be between 200 to 500 units. 
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  Note 1:  The “Peak” box always shows the frequency of the highest point 

 in the  window.   Read the box only when the near-33 Hz peak is the only
 one showing  in the 10 Hz wide window. 

 
 Note 2: Since the windows move  only in short steps, the peak near 33 Hz  

will appear in two consecutive windows.  The “Peak” reading in those two 
windows may differ by 0.1 Hz.  That small variation is normal; in such 
case record only one of those values. 

 
Step 5. If Tuning Fork response is adequate, save data and   proceed   to 

Step 7: 
 
 If response is as indicated in each of 4.4 (a), (b) and (c), Press F4, press 

ENTER (to select “Yes”), and the machine saves the results of the Tuning 
Fork test under the file name selected earlier.  A confirmation message 
appears (see note after Step 16). The system is now ready for testing the 
tendons.  Write down Peak frequency and Height in Log Form 
Supplementary Information section  and proceed to Step 7.  

 
 Otherwise, proceed to Step 6. 
  
Step 6. If Tuning Fork response is inadequate, check all settings and 

connections, and proceed to Step 4: 
 
 If response fails to result in any one of 4.4 (a), (b) or (c), the test response 

is inadequate, indicating a problem. Press F4 and then TAB (to select 
“No”) and then ENTER.  This resets the program. Check everything 
(including that accelerometer is firmly attached to tuning fork, connections, 
switch positions, etc.) and repeat test starting at Step 4. 

 
 
Step 7. Record ambient temperature and Span test start time: 
  
 Enter operator initials, temperature and date/time information on Log 

Form.  
 Always use ball-point pen.  If there are any entry errors, strike over and 

write correct entry on the side - do not attempt to write over old entry. 
 
Testing system is now ready to operate.  Proceed to Part C. 
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C. TEST EXECUTION STEPS 
 
Step 8. Select tendon to test, measure length, mark positions for 

accelerometer and hammer impact, and place accelerometer:  
 
8.1.  Tendon segment designations, segment length measurement and 
accelerometer placement position. 
 
8.2 Select  tendon segments to be tested in the order indicated in the Log 

Form for the appropriate Test Station.  Special procedures for tendon 
segments obstructed from free vibration will be provided in a separate 
document. 

 
8.3 Attaching accelerometer to tendon: 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 54. Accelerometer Orientation 
 
 The accelerometer is to be placed, with its axis on a plane approximately 

45o from vertical, on the plastic duct as shown in Figure 2.   Use mounting 
wax, cleaning any dust first.  Avoid dropping accelerometer. If 
accelerometer is dropped make a note of it on Log Form Supplementary 
Information section. 
Loose accelerometers are major source of rejected data.  If necessary, 
further secure the accelerometer to the duct using adhesive tape or a 
Velcro strap. 

Tendon

Vertical

~45 o

Accelerometer

Accelerometer Axis
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10.1 Route Accelerometer Extension Cable so that it does not rattle 
against tendon during vibration.   Cable may be lightly wrapped around the 
next tendon to avoid accidental yanking and to restrain accelerometer fall. 

 
8.4 Hammer impact is to be always applied on a direction perpendicular to the 

axis of the tendon, at a point approximately halfway between 
accelerometer and the deviation saddle end of the tendon.   Impact will be 
applied in two manners:  Straight and Side.  In Straight impact the 
direction of the blow is contained in a vertical plane. In Side impact the 
direction of the blow is in a horizontal plane.   
 
 

Step 9. Run Hammer Practice program section and practice to deliver 
adequate hammer blow strength.   SKIP STEP IF ALREADY 
TRAINED: 

 
9.1 Ensure that Steps 1 through 8 are completed.  
 
9.2 Using the designated hammer, impact (Straight) the tendon. See 

ADDENDUM 2 for important Notice and Disclaimer. For this operation 
screen must be within easy view from impact position. 

 
Hammer hitting: 

 
Adjust impact to obtain desired amplitude as detailed in instructions 
below. 

 
If duct is not tightly filled with grout at impact point (as indicated by 
unusual sound), change impact position to a point a few inches to 
the right or left of initial position) 

 
9.3 Press (CTRL+R).  Press F1 and hit tendon repeatedly, waiting about 3 

seconds between hits.  Watch signal display.  Signal trace at impact 
should go well beyond inner lines but should not cross the outer lines.  
Train yourself to adjust Straight impact strength until signal stays within 
limits.  With display still running, switch impact direction to Side and train 
for it similarly.  

 
 Press F2 when operation within limits is achieved in both directions and 

stop hitting tendon.  The Save Wave File  window will appear; do not 
attempt to close it.     

 
 Training is complete.  Wait about 20 seconds before next action. 
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Step 10. Run Tendon Test program section and acquire vibration data: 
 
 Ensure that Steps 1 through 8 are completed and that operator has 

already been trained to deliver adequate impact strength.  Each tendon is 
tested 2 times with Straight impact (tests 1 and 2) and 2 times with Side 
impact (tests 3 and 4).   

 
10.2 Press F3 if the Save Wave File window is not already on screen.   
 
 Type the file name (ALL CAPITALS) for the tendon segment to be tested 

and press ENTER.  The file name is the same as tendon segment 
designation (see ADDENDUM 1) but with the number 1 appended for the 
first test performed for the tendon segment, 2 for the second test, etc.    

 
 Example:  File for 1st test on tendon segment 116209NE is named 

116209NE1 .  File for 3rd test is named 116209NE3.   If a test is a repeat 
of a test that was not acceptable (due to implementation of Step 11), 
repeat the same file name used in the failed test (the failed test file will be 
written over).   DO NOT ENTER ANY FILE EXTENSIONS OR ALTER 
THIS PROCEDURE IN ANY WAY.  

 
 Note: this does not cause a file to be saved yet.  It only prepares 

the system to save the result of the test under the file name 
chosen, if the test is completed successfully.  

 
Have operator standby with hammer ready to hit (Straight for tests 1 and 
2, Side for tests 3 and 4) when directed.  

 
10.3 Press  F3 or the PUSH BOTTON (“TEST IN PROGRESS” appears on 

screen).  Immediately start counting: one-thousand-one, one-thousand-
two, so as to have a 2-second wait. Immediately following, direct operator 
to hit tendon only once.  The data acquisition  stops automatically 12 
seconds after pressing F3. 

 
 Do not touch the tendon, accelerometer or anything else in the 

equipment while the “TEST IN PROGRESS” message shows. 
 
 About 20 seconds later the test output appears on the screen.  Signal 

analysis by the computer is now complete.  
 
 
Step 11.Check to see If data are adequate or not: 
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 a) Examine strip record of top channel.  Is signal in top chart within limits 

described in step 9.3 ? 
 
b) Examine the spectrum record in the lower chart. A distinct peak should 
appear near the left end of the chart.    That is the Mode 1 peak  . An 
overtone peak (Mode 2) should be visible at about twice the frequency of 
Mode 1.   Higher overtones may be visible at about three or four times the 
frequency of Mode 1.  Also, the line between the peaks should be 
relatively smooth with few jagged regions. 

 
The signal in the top chart should be relatively symmetric and showing a 
gentle decay.   See Figure 3 for examples of “good” and “bad “signals and 
spectra.  
 
Do signal and spectrum have the "good' appearance shown in Figure 3?  
 
c) If answers to both (a) and (b) are YES, go to Step 12. 

 
d) If answer to (a) is NO,  too low or too high impact has been applied.   
Press F4 and then TAB (to select “No”) and then ENTER.  Check 
equipment and go to Step 9 for hammer practice. 

 
e) If answer to (a) is YES but answer to (b) is NO, test needs to be rerun. 
“Bad” signals and spectra are often due to a loose accelerometer, 
obstructions in the tendon motion, or abnormal hammer impact.   Check 
for those problems as well as equipment and connections.  Correct 
deficiencies.   Press F4 and then TAB (to select “No”) and then ENTER.  
Press (CTRL+R).  This resets the program.  Go to Step 10 to repeat test. 
 

Note:  If a “bad” spectrum or signal persists after a few tries, 
complete the tests anyway, make a note of the problem,  and 
proceed to the next tendon.  Repeated difficulties in subsequent 
tendons may indicate equipment malfunction. 

  
Step 12. Identify and record peak frequencies:  
 
12.1 Press TAB and select RANGE box.  Afterwards, pressing the UP or 

DOWN keys causes the spectrum to zoom into a 10 Hz wide window that 
shifts in 5 Hz steps. Shift the window until it includes the Mode 1 peak.  
Read the peak frequency as shown in the “Peak” box and enter in Log 
Form.  Repeat for Mode 2 peak.    

  Note 1:  The “Peak” box always shows the frequency of the highest 
point  in the window.   Read the box only when the desired Mode is the  
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 main feature showing in the 10 Hz wide window.  Some peaks may be 

split into two closely spaced peaks; record only the tallest. 
 
 Note 2:  Since the windows move  only in short steps, each desired mode 

may appear in two consecutive windows.  The “Peak” reading in those two 
windows may differ by 0.1 Hz.  That small variation is normal; in such case 
record only one of those values for the Mode. The approximate Mode 1 
frequencies expected are listed in Table 1 (rough estimates - actual 
behavior may be substantially different). 
  

Step 13. Save file:  
 

Press F4, press ENTER.  The machine saves the results.  A confirmation 
message appears (see note after Step 16).  Press CTRL+R.  

 
Step 14. Conduct second, third or fourth test of the tendon segment. 

(Steps 10 - 13): 
 

If the previous test was not the fourth successful test for this tendon 
segment, repeat Steps (10) through (13).  Otherwise, go to Step (15). 

 
Step 15. Proceed to next tendon segment in span starting at step (8): 
 
 After the 4th successful test for this tendon segment is concluded, go to 

Step (8). Continue until all tendon segments in the Test Station are tested.  
Then go to Step (16). 

 
Step 16. After the last segment in the span is tested, record temperature, 

copy data to CDRW drive, and prepare for next Span: 
 
 Press left side of Red Rocker switch  of Sensor Signal Conditioner to the 

OFF position. 
 
 Exit Analyzer-M  program by pressing (ALT+F4). 
 
 Read temperature and record temperature and time in Log File.  
  
 The files from all tendon tests plus the Tuning Fork test file for this Test 

Station have been stored in the Folder named  ANALYZER FILES in the C 
drive  (folder ANALYZER FILES accumulates all the data from all the Test 
Stations).  Copy all the files for this Test Station to a folder named  
STATION##  (where ## is the Test Station designation) onto the formatted  
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 CDRW disk that is in the CD drive. That CDRW disk has been formatted 

to act as if it were a hard drive.   Copy into the same folder also any other 
files that may have originated for this Test Station (for example, from extra 
tests).   

 
 Go through Windows Shut Down sequence and turn off computer. 
 
Preparations 
 
Procedure for identifying tendon segments, measuring and recording lengths, 
and marking for accelerometer and impact location.   
 
 
1. Tendon segment designations 

 
Use following order:  Span number, direction, position along span, position 
across span, length of the sloping segment, creating an eight-character 
name FFFGGHIJ.  The values that each of the characters can take are 
per Table 1. 

 
FFFGGHIJ 
 
 
Table 3. Eight-Character Tendon Segment Designation 
 

 

 
Span Designation 
Span Number 
 
FFF 

Direction  
 
GG 

 
 
Position 
Along Span  
 
H  
 

 
 
Position 
Across 
Span  
 
I 
 

 
 
Length of Sloping 
Segment 
 
J  
 

 
 
 
088 to 105 
or 
117 to 134 
 
 
 
 

 
 
 
SB: 
Southbound 
 
 
NB: 
Northbound 

 
 
 
S: South End 
 
 
N: North End 

 
 
 
W: West 
Side 
 
 
E: East Side 

 
 
 
L:  Longest 
 
M: Medium 
 
S:  Shortest 
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2. Measuring and recording length. 
 
a. For each tendon segment to be tested, clear any obstructions or debris 

that may prevent tendon from vibrating freely.  Note: If the tendon is 
obstructed by unremovable obstacles (e.g, contact with walls or with other 
tendons), frets will need to be installed.  Procedures for fret placement and 
associated testing will be indicated in a supplementary guide.  

 
b. On each tendon segment, measure and record in Log Form the clear 

concrete-to-concrete distance.  Make a note of any unusual details such 
as uneven concrete surface.  

 
 If available, use a metric tape and write result with 1 mm precision (if only 

English-units tape is available, write result in inches with 1/8 inch 
precision). If any other device [e.g. Laser unit] is used instead of tape, 
ensure first that device is accurate by making independent tape and 
device measurements in at least 12 different segments in actual field 
conditions. Send table of results for USF where statistical analysis of 
results will be conducted for verification.  
 

• If using tape, ensure that an accurate, stretch-free tape is used.  Do not pull 
on tape excessively.  Replace kinked or damaged tape.  

 
• Make sure that any folding tabs at end of tape are properly positioned. 

 
• If concrete face is irregular, refer distance to main plane representing surface.  
 
3. Marking accelerometer and impact positions 

a. Mark with tape or bright marker position where accelerometer is to be 
placed. See Figure A1 (if end points are not against a bulkhead or a 
deviation saddle, measure distances from lowest point). Position is at  

 
 distance LA from low end, where LA is ~1/3 of the tendon segment length. 

 
 The value of this distance is not critical but once chosen it must be 

recorded. 
 
b. Mark with tape or bright marker position where impact is to be made. See 

Figure A1. Position is at distance LI from low end, where LI is ~1/6 of the 
tendon segment length.  The value of this distance is not critical but once 
chosen it must be recorded. 
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Figure 55. Accelerometer Position 
 
SPREADSHEET FOR TENSION COMPUTATION. 

Tension.xls Spreadsheet Instructions 

1 - Open the Excel Workbook called “Tension.xls”. 

2 - In the Worksheet called “Inputs” enter the following data in their 

corresponding cells: 

-Bridge’s name. 

-Length L (meters) and  Mode Frequencies f  (Hz) for each of the tendon  

segments tested, from the Log Form.  

- Number of strands Strands  from bridge construction data.  

- Mass mu per unit length (kg/meter), and stiffness S of the tendon (N-m2), 

from the Estimation Tables for each tendon segment of being analyzed. 

The Estimation Tables use as input the number of strands and the tendon 

diameter, the latter to be measured in situ for each tendon.  

3 - The calculated Tension per strand (kN/strand), in each of the bridge  
 
segments, appears on the  “Results” Worksheet. 
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Figure 56. ANALYZER-DAB Level 3 Subdiagram 0-A 

 
Figure 57. ANALYZER-DAB Level 3 Subdiagram 0-B 
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Figure 58. ANALYZER-DAB Level 3 Subdiagram 0-C 

 
Figure 59. ANALYZER-DAB Level 3 Subdiagram 1-A 
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Figure 60. ANALYZER-DAB Level 3 Subdiagram 1-B 
 

 
Figure 61. ANALYZER-DAB Level 3 Subdiagram 1-C 
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INSTRUCTIONS FOR INSTALLATION / UN-INSTALLATION OF ANALYZER-
DAB.EXE   
Install:    

1. If Windows Explorer is not already configured to show file extensions, 
configure your Windows Explorer to always show file extensions. 

2. Install LabVIEW Run-time Engine 7.1 if LabVIEW 7.1 or higher is not 
installed in the computer. 

3. Install NI-DAQmx Base Version 2.0 for Windows 2000/XP. 
4. Go to DAQ-remote folder in the Installation CD. 
5. Navigate to the Installer folder inside DAQ-remote folder. 
6. Click on install.msi and follow the instructions in the WIZARD. 
 

During the installation process, the setup will display the location 
where the program will be installed. The “Destination Folder” item 
should display EXACTLY “c:\ANALYZER-DAQ” (and NOTHING 
ELSE) as the path for the destination of the program. If it does not, 
navigate to the folder “c:\ANALYZER-DAQ” using the “Browse” 
button located on the right hand side of the setup window.   
      

7. After installation is complete, locate the file ANALYZER-M.EXE (it should 
be located in the folder “c:\programs\ANALYZER-DAQ” or go to the start 
menu and choose programs) and create a shortcut for that file on the 
desktop.  

8. A simplify way to install the program would be to copy the file ANALYZER-
DAQ.EXE from the DAQ-remote folder and paste on the desktop. 

 
Un-Install: 

3. In the Installation CD, navigate to  DAQ-remote\Installer folder, click on 
install.msi 

4. Follow the instructions in the wizard. 
 
Imp. Note: In the un-installation process, the wizard should indicate that the 
process is indeed un-installation, not an installation. 

Wave-Player DAQ.EXE installation 

Follow same instructions as for ANALYZER-DAQ.EXE but taking into 
consideration that the files should be under wave-player DAQ folder. 

Run-Time Engine installation 

From the installation CD run LVRunTimeEng 7.1.exe to install the LabVIEW 7.1 
Run-Time Engine. 



www.manaraa.com

 86

Appendix 8:(Continued) 

NI-DAQmx Base Version 2.0 installation 

1. Create a temporary folder on your local hard drive.  
2. Extract the NIDAQmxBase200.zip file into the folder created in Step 1. 

This will create the installation files necessary for installing NI-DAQmx 
Base.  

3. To launch the NI-DAQmx Base installer, run setup.exe from the folder 
created in Step 1.  
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Figure 62. WavePlayer-DAB Block Diagram A 

 
Figure 63. WavePlayer-DAB Block Diagram B 
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Figure 64. Wave Player Micro Block Diagram A 

 
Figure 65. Wave Player Micro Block Diagram B 
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Figure 66. Schematic ER Probe Initial Conditions 
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A
LR ρ⋅=   where R is the resistance of the wire in ohms, L is the length of the 

wire, ρ is the resistivity of the steel, and A is the cross section area of the wire. 

2rA ⋅= π , where r is the radius of the wire. 

( )
( )2

2

corr

o

corr

o

rL
rL

R
R

⋅⋅
⋅⋅=

πρ
πρ  where Ro is the original resistance of the wire, Rcorr is the 

Resistance of the wire after it corroded, ro is the original radius of the wire, and 

rcorr is the radius of the wire after it has corroded.  

Simplifying the above equation. 

corroocorr RRrr ⋅=   

Since )1( PRR ocorr +⋅=  

)1( PRRrr ooocorr +⋅⋅=  

)1(1 Prr ocorr +⋅=   
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Appendix 13: Block Diagram P-Measurements           

 

 

 

Figure 67. Block Diagram P-Measurements A          
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Figure 68. Block Diagram P-Measurements B          
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